1. Sa se arate ca daca \( \triangle ABC \) este ascutitunghic, atunci \( a\cdot \sin A \) , \( b\cdot\sin B \) , \( c\cdot\sin C \) sunt lungimile laturilor unui triunghi.
2. Sa se arate ca intr-un triunghi \( A \)-dreptunghic \( ABC \) exista inegalitatea \( \frac{\tan^2B}{1+\cos^2B}+\frac{\tan^2C}{1+\cos^2C}\ \ge\ \frac{4}{3} \) .
IMAC 2010 Problema 3
Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata, Virgil Nicula
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
IMAC 2010 Problema 3
ENUNT CORECTAT !
Andi Brojbeanu
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
profesor, Liceul Teoretic "Lucian Blaga", Cluj-Napoca
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
a) In triunghiul cu lungimile laturilor \( a\sin A \) , \( b\sin B \) , \( c\sin C \) trebuie indeplinite inegalitatile de tipul
\( a\sin A\ <\ b\sin B\ +\ c\sin C \) a.s.o. , echivalente cu \( \frac{a^2}{2R}\ <\ \frac{b^2}{2R}\ +\ \frac{c^2}{2R} \) sau \( a^2\ <\ b^2\ +\ c^2 \) a.s.o. ,
ceea ce este adevarat, intrucat \( \triangle\ ABC \) este ascutitunghic .
b) Notam \( x=b^2 \) , \( y=c^2 \) . Evident \( a=x+y \) . \( LHS=\frac{\frac{b^2}{c^2}}{1+\frac{c^2}{a^2}}+\frac{\frac{c^2}{b^2}}{1+\frac{b^2}{a^2}}=\frac{x(x+y)}{y(x+2y)}+\frac{y(x+y)}{x(2x+y)} \) .
\( \Longrightarrow\ LHS=\frac{x+y}{xy}\left(\frac{x^2}{x+2y}+\frac{y^2}{2x+y}\right)\ \stackrel{\small CBS}{\ge}\ \frac{x+y}{xy}\ \cdot\ \frac{(x+y)^2}{3(x+y)}=\frac{(x+y)^2}{3xy}\ \ge\ \frac 43 \)
\( a\sin A\ <\ b\sin B\ +\ c\sin C \) a.s.o. , echivalente cu \( \frac{a^2}{2R}\ <\ \frac{b^2}{2R}\ +\ \frac{c^2}{2R} \) sau \( a^2\ <\ b^2\ +\ c^2 \) a.s.o. ,
ceea ce este adevarat, intrucat \( \triangle\ ABC \) este ascutitunghic .
b) Notam \( x=b^2 \) , \( y=c^2 \) . Evident \( a=x+y \) . \( LHS=\frac{\frac{b^2}{c^2}}{1+\frac{c^2}{a^2}}+\frac{\frac{c^2}{b^2}}{1+\frac{b^2}{a^2}}=\frac{x(x+y)}{y(x+2y)}+\frac{y(x+y)}{x(2x+y)} \) .
\( \Longrightarrow\ LHS=\frac{x+y}{xy}\left(\frac{x^2}{x+2y}+\frac{y^2}{2x+y}\right)\ \stackrel{\small CBS}{\ge}\ \frac{x+y}{xy}\ \cdot\ \frac{(x+y)^2}{3(x+y)}=\frac{(x+y)^2}{3xy}\ \ge\ \frac 43 \)
- Andi Brojbeanu
- Bernoulli
- Posts: 294
- Joined: Sun Mar 22, 2009 6:31 pm
- Location: Targoviste (Dambovita)
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Spataru Stefan
- Euclid
- Posts: 13
- Joined: Mon May 03, 2010 9:02 pm
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Problema nu mi se pare gresita. Presupunem ca \( \widehat{B}\le\widehat{C}\Longrightarrow\widehat{B}\le45^{\circ} \). Deoarece \( \cos C=\sin B \) si \( \tan C=\frac{1}{\tan B} \) avem ca:
\( LHS=\frac{\tan^{2}B+\frac{1}{\tan^{2}B}}{1+\sin^{2}B}\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3} \), iar egalitate avem cand \( \tan{B}=1 \).
\( LHS=\frac{\tan^{2}B+\frac{1}{\tan^{2}B}}{1+\sin^{2}B}\ge\frac{2}{1+\frac{1}{2}}=\frac{4}{3} \), iar egalitate avem cand \( \tan{B}=1 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Spataru Stefan
- Euclid
- Posts: 13
- Joined: Mon May 03, 2010 9:02 pm
- Mateescu Constantin
- Newton
- Posts: 307
- Joined: Tue Apr 21, 2009 8:17 am
- Location: Pitesti
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Met 1. \( \left\|\ \begin{array}{c}Sa se arate ca intr-un triunghi \( A \)-dreptunghic \( ABC \) exista inegalitatea \( \frac{\tan^2B}{1+\cos^2B}+\frac{\tan^2C}{1+\cos^2C}\ \ge\ \frac{4}{3} \) .
\tan B\cdot\tan C=1\\\\\\\\\\\\\
\cos^2B+\cos^2C=1\\\\\\\\\\\\
(x+y)^2\ge 4xy\end{array}\ \right\|\ \Longrightarrow\ \frac{\tan^2B}{1+\cos^2B}+\frac{\tan^2C}{1+\cos^2C}\ \stackrel{C.B.S.}{\ \ge\ }\ \frac {(\tan B+\tan C)^2}{2+\left(\cos^2 B+\cos^2 C\right)}\ \ge\ \frac{4\cdot\tan B\cdot\tan C}{3}=\frac 43 \) .
Ma intreb daca juniorii stiu CBS (cel putin pentru \( n=2 \)) sau aceasta problema are o solutie fara a utiliza CBS ... Intr-adevar, are !
Met 2. Notam \( x=\cos^2B \) , \( y=\co^2C \) si \( S=x+y=1 \) , \( P=xy \) . Asadar \( x \) si \( y \) sunt radacinile ecuatiei \( t^2-t+P=0 \) ,
adica \( \left\|\ \begin{array}{c}
x^2=x-P\\\\\\\\\\\\\\\
y^2=y-P\end{array}\ \right\| \) , unde \( P=xy\le\left(\frac {x+y}{2}\right)^2=\frac 14\ \Longrightarrow\ \underline{\overline{\left\|\ P\le \frac 14\ \right\|}} \) . Inegalitatea propusa devine \( \frac {y}{x(1+x)}+\frac {x}{y(1+y)}\ge \frac 43\ \Longleftrightarrow \)
\( \frac {y}{2x-P}+\frac {x}{2y-P}\ge \frac 43\ \Longleftrightarrow\ \frac {2(1-2P)-P}{4P-2P+P^2}\ge\frac 43\ \Longleftrightarrow\ \frac {2-5P}{P^2+2P}\ge \frac 43\ \Longleftrightarrow\ 4P^2+23P-6\le 0\ \Longleftrightarrow\ (4P-1)(P+6)\le 0 \) , adevarata.
Ma intreb acum daca juniorii stiu trinomul si/sau ecuatia de gradul 2 ... In acest caz solutia precedenta
se poate "fenta" prin formulele de calcul prescurtat \( \left\|\ \begin{array}{c}
x^2+y^2=(x+y)^2-2xy=1-2P\\\\\\\\\\\\\\\\\
x^3+y^3=(x+y)(x^2+y^2-xy)=1-3P\end{array}\ \right\| \) .
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Dupa parerea mea, juniorii stiu de toate, si mai multe decat trebuie.
CBS, etc. numai ca a sti nu e destul. Trebuie multa munca pentru a putea aplica ceea ce stii in mod eficient in rezolvarea unei probleme.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Re: IMAC 2010 Problema 3
La prima fractie este tg^2 B / 1 + sin^2 B, nu cos^2 B....Andi Brojbeanu wrote:1. Sa se arate ca daca \( \triangle ABC \) este ascutitunghic, atunci \( a\cdot \sin A \) , \( b\cdot\sin B \) , \( c\cdot\sin C \) sunt lungimile laturilor unui triunghi.
2. Sa se arate ca intr-un triunghi \( A \)-dreptunghic \( ABC \) exista inegalitatea \( \frac{\tan^2B}{1+\cos^2B}+\frac{\tan^2C}{1+\cos^2C}\ \ge\ \frac{4}{3} \) .
Catană Adrian
Elev la Colegiul Naţional Ienăchiţă-Văcărescu, Târgovişte,
Clasa a 8 a
Elev la Colegiul Naţional Ienăchiţă-Văcărescu, Târgovişte,
Clasa a 8 a
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
ENUNT INITIAL (gresit !). Sa se arate ca intr-un triunghi \( A \)-dreptunghic \( ABC \) exista inegalitatea \( \frac{\tan^2B}{1+\underline{\overline{\left|\sin^2B\right|}}}+\frac{\tan^2C}{1+\cos^2C}\ \ge\ \frac{4}{3} \) .
acelasi numitor si inegalitatea este adevarata daca si numai daca \( B\le \frac {\pi}{4} \) sau \( B\ge \arctan\sqrt {\frac {1+\sqrt {10}}{3}} \) .
Intr-adevar, sa mergem pe enuntul initial. Inegalitatea este echivalenta cu \( 3\left(\tan^2B+\tan^2C\right)\ge 4\left(1+\sin^2B\right)\ \stackrel{t=\tan B}{\Longleftrightarrow} \) \( 3\left(t^2+\frac {1}{t^2}\right)\ge \frac {4\left(2t^2+1\right)}{t^2+1} \) \( \Longleftrightarrow \)
\( 3\left(t^2+1\right)\left(t^4+1\right)\ge 4t^2\left(2t^2+1\right)\Longleftrightarrow 3t^6-5t^4-t^2+3\ge 0 \) \( \Longleftrightarrow \left(t^2-1\right)\left(3t^4-2t^2-3\right)\ge 0 \) \( \Longleftrightarrow (t-1)\left(t-\sqrt {\frac {1+\sqrt {10}}{3}}\right)\ge 0 \) \( \Longleftrightarrow t\in (0,1]\cup\left[\sqrt {\frac {1+\sqrt {10}}{3}},\infty\right) \) .
Pai cum sa o rezolvi daca enuntul initial a fost gresit. Pe enuntul initial cele doua fractii auMr. Ady wrote:Si eu tot cu teorema sin. am folosit-oInegalitatea n-am reuşit s-o demonstrez în totalitate
acelasi numitor si inegalitatea este adevarata daca si numai daca \( B\le \frac {\pi}{4} \) sau \( B\ge \arctan\sqrt {\frac {1+\sqrt {10}}{3}} \) .
Intr-adevar, sa mergem pe enuntul initial. Inegalitatea este echivalenta cu \( 3\left(\tan^2B+\tan^2C\right)\ge 4\left(1+\sin^2B\right)\ \stackrel{t=\tan B}{\Longleftrightarrow} \) \( 3\left(t^2+\frac {1}{t^2}\right)\ge \frac {4\left(2t^2+1\right)}{t^2+1} \) \( \Longleftrightarrow \)
\( 3\left(t^2+1\right)\left(t^4+1\right)\ge 4t^2\left(2t^2+1\right)\Longleftrightarrow 3t^6-5t^4-t^2+3\ge 0 \) \( \Longleftrightarrow \left(t^2-1\right)\left(3t^4-2t^2-3\right)\ge 0 \) \( \Longleftrightarrow (t-1)\left(t-\sqrt {\frac {1+\sqrt {10}}{3}}\right)\ge 0 \) \( \Longleftrightarrow t\in (0,1]\cup\left[\sqrt {\frac {1+\sqrt {10}}{3}},\infty\right) \) .