Aflati \( X\in M_2(\mathbb{R}) \), cu \( X^{n+2}+X^n=\left({\begin{array} 1&-1 \\
-1&1\end{array} \right) \), \( n\in\mathbb{N}^* \).
L. Panaitopol
Ecuatie matriceala
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
Ecuatie matriceala
n-ar fi rau sa fie bine 
-
opincariumihai
- Thales
- Posts: 134
- Joined: Sat May 09, 2009 7:45 pm
- Location: BRAD
Fie \( A=X^n(X^2+I_2) \). Cum \( \det A=0 \), obtinem ca \( (\det X)^n\det(X^2+I_2)=0 \). Daca \( \det(X^2+I_2)=0 \), cum X are elementele reale, va rezulta usor ca \( X^2+I_2=O_2 \) relatie care inlocuita in cea din ipoteza duce la contradictie. Ramane ca \( \det X=0 \) de unde, notand \( u=\tr X \), obtinem \( X^k=u^{k-1}X \) relatie care inlocuita in cea din ipoteza duce la : \( (u^{n+1}+u^{n-1})X=A \) (1) si aplicand urma in aceasta relatie obtinem \( u^{n+2}+u^{n}-2=0 \). Acum in functie de paritatea lui n obtinem ca \( u=1 \) sau \( u=1, u=-1 \) relatii care inlocuite in (1) conduc la cele doua solutii.