Divizibilitate

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Divizibilitate

Post by alex2008 »

Aratati ca numarul \( N=8^{16}-6^{16} \) este divizibil cu 400 .

Indicatie : \( N=2^{16}(4^{16}-3^{16}) \) si \( 400=2^4\cdot 5^2 \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

re:divizibilitate

Post by Andi Brojbeanu »

\( 2^{16}=2^4\cdot 2^{12};

4^{16}-3^{16}=(4^{8})^2-(3^{8})^2=(4^{8}+3^{8})(4^{8}-3^{8})=(4^{8}+3^{8})[(4^{4})^2-(3^{4})^2] \)
\( =(4^{8}+3^{8})(4^4+3^4)(4^4-3^4) \)\( =(4^{8}+3^{8})(4^4+3^4)[(4^2)^2-(3^2)^2]= \)
\( =(4^{8}+3^{8})(4^4+3^4)(4^2-3^2)(4^2+3^2) \)\( =(4^{8}+3^{8})(4^4+3^4)(4^2-3^2)\cdot 5^2 \)
Atunci \( N=2^4\cdot 2^{12}\cdot 5^2\cdot (4^{8}+3^{8})(4^4+3^4)(4^2-3^2)=400\cdot 2^{12}\cdot (4^{8}+3^{8})(4^4+3^4)(4^2-3^2) \), divizibil cu 400.
Post Reply

Return to “Clasa a 7-a”