Search found 3 matches
- Wed Mar 10, 2010 2:33 pm
- Forum: Analiza matematica
- Topic: Sir
- Replies: 3
- Views: 363
Sir
Fie sirul (x_n)_{n\geq 1}, x_1 \in R, x_{n + 1} = \frac {2}{1 + x_n^2}, n \geq 1. Aratati ca \lim_{n\to \infty} = 1 Daca trecem la limita in relatia de recurenta \Rightarrow l = \frac {2}{1 + l^2} Apoi consideram functia f(l) = l(1 + l^2) . Functia este crescatoare pe intervalul (0, \infty) \Rightar...
- Tue Mar 09, 2010 8:04 pm
- Forum: Algebra
- Topic: determinant
- Replies: 1
- Views: 281
determinant
\( a, b, c, d \in C. \)Aratati ca
\( \det \begin{pmatrix} b + c + d & a & a & a \\
b & a + c + d & b & b \\
c & c & a + b + d & c \\
d & d & d & a + b + c \\
\end{pmatrix} = 4\sum abc(a + b + c) \)
\( \det \begin{pmatrix} b + c + d & a & a & a \\
b & a + c + d & b & b \\
c & c & a + b + d & c \\
d & d & d & a + b + c \\
\end{pmatrix} = 4\sum abc(a + b + c) \)
- Tue Mar 09, 2010 7:29 pm
- Forum: Analiza matematica
- Topic: Functie
- Replies: 1
- Views: 302
Functie
Fie \( f: R\to R, f(x) = ax^2 + bx + c, a > 0 \) si punctele \( A_n(n, f(n)), n\in N. \) Sa se calculeze \( \lim_{n\to \infty} aria [A_n A_{n + 1}A_{n + 2}] \).