Search found 308 matches

by Mateescu Constantin
Sun Sep 12, 2010 9:53 am
Forum: Clasa a X-a
Topic: Inegalitate cu un punct in interiorul triunghiului
Replies: 2
Views: 196

Vezi aici .
by Mateescu Constantin
Wed Sep 08, 2010 3:42 pm
Forum: Analiza matematica
Topic: Limita unui sir
Replies: 5
Views: 247

Limita unui sir

Fie sirul \( (a_n)_{\small n\ge 0} \) definit prin : \( a_n=\sqrt{n^2+1}+\sqrt{n^2+2}+\ldots +\sqrt{n^2+n}-n^2-\frac n4 \) . Calculati \( \lim_{n\to\infty}\ a_n \) .
by Mateescu Constantin
Wed Sep 08, 2010 1:32 am
Forum: Analiza matematica
Topic: Functie
Replies: 1
Views: 293

Fie f\ :\ \mathbb{R}\to\mathbb{R} , f(x)=ax^2+bx+c , a\ >\ 0 si punctele A_n\ \left\(\ n\ ,\ f(n)\ \right\) , n\in\mathbb{N} . Sa se calculeze : \lim_{n\to\infty}\ \left\[A_nA_{n+1}A_{n+2}\right\] . Solutie : Se stie ca pentru punctele necoliniare : \left\|\ \begin{array}{cccc} M & (\ x_1\ ,\ y...
by Mateescu Constantin
Sun Sep 05, 2010 9:40 pm
Forum: Inegalitati
Topic: O inegalitate cu 1/cos(A/2) intr-un triunghi
Replies: 3
Views: 162

Hai ca-i usoara si partea stanga :) . Mai devreme m-am complicat eu inutil ... Stim ca \fbox{\ \tan\frac x2=\frac {1-\cos x}{\sin x}\ } precum si \fbox{\ \sum\ \tan\ \frac A2=\frac {4R+r}s\ } . Prin urmare avem : \sum\ \frac 1{\cos\ \frac A2}=\frac {4R+r}s\ +\ \sum\ \tan\ \frac {B+C}4 , deci ramane ...
by Mateescu Constantin
Sun Sep 05, 2010 8:19 pm
Forum: Inegalitati
Topic: O inegalitate cu 1/cos(A/2) intr-un triunghi
Replies: 3
Views: 162

Cezar , partea dreapta la inegalitatea ta e mai slaba decat cea initiala, deoarece se reduce la s\sqrt 3\ \le\ 4R+r . Pentru inegalitatea de inceput se aplica inegalitatea Popoviciu functiei f(x)=\tan\frac x2 , x\in (0,\pi) . Totusi, partea stanga pare destul de tare ... Deocamdata am reusit sa o d...
by Mateescu Constantin
Fri Sep 03, 2010 11:14 pm
Forum: Algebra
Topic: O identitate simpla cu det si tr
Replies: 2
Views: 133

Sa incercam mai elegant :) Fie P(X)=\det (A-XI_2)=X^2-a\cdot X+b polinomul caracteristic al matricei A , unde a=\tr A , b=\det A . Atunci : \left\|\ \begin{array}{cccc} P(\mbox{i}) & = & -1-\mbox{i}\cdot a+b \\\\\\\\\\ P(-1) & = & 1+a+b \\\\\\\\\\ P(-\mbox{i}) & = & -1+\mbox{...
by Mateescu Constantin
Fri Sep 03, 2010 2:04 pm
Forum: Algebra
Topic: O identitate simpla cu det si tr
Replies: 2
Views: 133

O identitate simpla cu det si tr

Aratati ca daca \( A\in\mathcal{M}_2(\mathbb{C}) \) atunci exista relatia : \( \fbox{\ \det\ \left\(A^3+A^2+A+I_2\right\)=\left\[1+\tr A+\det A\right\]\ \cdot\ \left\[\left\(1-\det A\right\)^2+\tr^2 A\right\]\ } \) .
by Mateescu Constantin
Tue Aug 31, 2010 11:35 pm
Forum: LaTeX
Topic: Text in chenar
Replies: 0
Views: 90

Text in chenar

Am gasit codul care incadreaza foarte estetic o formula scrisa in \LaTeX si functioneaza aici pe Mateforum . In formula \LaTeX se aplica \fbox{ ... } pe portiunea ce se vrea de incadrat . Iata-l ce frumos e : \fbox{\ \mbox{MATEFORUM}\ } sau, mai mult \fbox{\fbox{\ \mathbf{MATEFORUM}\ }} . Acum arata...
by Mateescu Constantin
Tue Aug 31, 2010 7:26 pm
Forum: Chat de voie
Topic: Sfarsitul incununeaza opera.
Replies: 0
Views: 108

Sfarsitul incununeaza opera.

\clubsuit\ \ Cheie : "Sfarsitul incununeaza opera." Studiati cu mare atentie tabelul de mai jos, apoi raspundeti la intrebarea : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Se pune ceva in ultimele casute ? [/color] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...
by Mateescu Constantin
Tue Aug 31, 2010 4:15 pm
Forum: Algebra
Topic: Puterile unei matrice din M_3(R)
Replies: 1
Views: 612

Se stie, sau se arata usor prin inductie ca daca A\in\mathcal{M}_3(\mathbb{R}) exista sirurile (x_n)_{\small n\ge 1} , (y_n)_{\small n\ge 1} si (z_n)_{\small n\ge 1} astfel incat : \fbox{\ A^n=x_n\cdot A^2\ +\ y_n\cdot A\ +\ z_n\cdot I_3\ } unde \left\{\ \begin{array}{llllll} x_1=0 &\ ;\ & y...
by Mateescu Constantin
Sun Aug 29, 2010 4:11 pm
Forum: Algebra
Topic: Matrice de ordin 2
Replies: 1
Views: 76

Matrice de ordin 2

Sa se determine toate matricele \( A=\left\(\begin{array}{ccc}
a & b \\\\\\\\
c & d\end{array}\right\)\in\mathcal{M}_2(\mathbb{C}) \)
pentru care \( A^n=\left\(\begin{array}{cccc}
a^n & b^n \\\\\\\\
c^n & d^n\end{array}\right\) \)
, \( \forall\ n\in\mathbb{N}^{\ast} \) .
by Mateescu Constantin
Sun Aug 29, 2010 2:00 pm
Forum: Analiza matematica
Topic: O limita
Replies: 1
Views: 101

O limita

Calculati : \( \lim_{x\to\infty}\ \left(\ 2^{\frac {2-x}x}\ +\ 4^{\frac {4-x}x}\ +\ 6^{\frac {6-x}x}\ +\ 12^{\frac {12-x}x}\ \right)^x \) .
by Mateescu Constantin
Sun Aug 29, 2010 1:00 am
Forum: Clasa a X-a
Topic: Inegalitate din G. M. 6/2010
Replies: 1
Views: 69

\odot\ \ LHS\ \stackrel{\small\mbox{CEB}}{\ge}\ \frac 13\cdot\left(a^m+b^m+c^m\right)\left(\frac 1{a^n+b^n}+\frac 1{b^n+c^n}+\frac 1{c^n+a^n}\right)\ \stackrel{\small\mbox{C.B.S.}}{\ge}\ \frac 32\ \cdot\ \frac {a^m+b^m+c^m}{a^n+b^n+c^n} . \odot\ \ Ramane sa aratam inegalitatea \frac{a^m+b^m+c^m}{a^...
by Mateescu Constantin
Sat Aug 28, 2010 1:32 pm
Forum: Inegalitati
Topic: O inegalitate cu 1/cos(A/2) intr-un triunghi
Replies: 3
Views: 162

O inegalitate cu 1/cos(A/2) intr-un triunghi

\( \fbox{\ \triangle\ ABC\ \ \Longrightarrow\ \ \frac 1{\cos\ \frac A2}\ +\ \frac 1{\cos\ \frac B2}\ +\ \frac 1{\cos\ \frac C2}\ \le\ \frac {\sqrt 3}2\ +\ \frac {3(4R+r)}{2s}\ } \)
by Mateescu Constantin
Fri Aug 27, 2010 11:24 pm
Forum: Inegalitati
Topic: O inegalitate draguta intr-un triunghi ascutit sau drept
Replies: 0
Views: 64

O inegalitate draguta intr-un triunghi ascutit sau drept

Aratati ca intr-un triunghi ascutit sau drept are loc inegalitatea : \( \fbox{\ \frac{a^4+b^4+c^4}{a^2+b^2+c^2}\ \ge\ 3R^2\ } \) .
by Mateescu Constantin
Fri Aug 27, 2010 11:17 pm
Forum: Inegalitati
Topic: Doua perechi de inegalitati in triunghiuri particulare
Replies: 0
Views: 55

Doua perechi de inegalitati in triunghiuri particulare

Sa se arate ca in \triangle\ ABC avem : \ \ \ \begin{array}{cccc}\nearrow\ \left\|\ \begin{array}{cccc} 0\ <\ \phi\ <\ 90^{\circ} \\\\ A\ \ge\ B\ \ge\ \phi\ \ge\ C\end{array}\ \right\|\ \Longrightarrow\ \left\{\begin{array}{cccc} a^2+b^2+c^2\ \ge\ 8R^2\cdot\sin^2\phi+4S\cdot\cot\phi \\\\ s\ \ge\ 2R\...
by Mateescu Constantin
Fri Aug 27, 2010 12:28 pm
Forum: Inegalitati
Topic: O inegalitate cu radicali intr-un triunghi
Replies: 2
Views: 136

DA , inegalitatea de mai sus are loc in orice triunghi ! Pentru a o arata puteti proceda astfel : Se ridica inegalitatea la patrat, se folosesc identitatile cunoscute si cateva transformari, iar in final se ajunge la inegalitatea (destul de tare zic eu) : \fbox{\ AI+BI+CI\ \ge\ s+3r(2-sqrt 3)\ } . ...

Go to advanced search