Search found 308 matches
- Sun Sep 12, 2010 9:53 am
- Forum: Clasa a X-a
- Topic: Inegalitate cu un punct in interiorul triunghiului
- Replies: 2
- Views: 196
- Wed Sep 08, 2010 3:42 pm
- Forum: Analiza matematica
- Topic: Limita unui sir
- Replies: 5
- Views: 247
Limita unui sir
Fie sirul \( (a_n)_{\small n\ge 0} \) definit prin : \( a_n=\sqrt{n^2+1}+\sqrt{n^2+2}+\ldots +\sqrt{n^2+n}-n^2-\frac n4 \) . Calculati \( \lim_{n\to\infty}\ a_n \) .
- Wed Sep 08, 2010 1:32 am
- Forum: Analiza matematica
- Topic: Functie
- Replies: 1
- Views: 293
- Sun Sep 05, 2010 9:40 pm
- Forum: Inegalitati
- Topic: O inegalitate cu 1/cos(A/2) intr-un triunghi
- Replies: 3
- Views: 162
Hai ca-i usoara si partea stanga :) . Mai devreme m-am complicat eu inutil ... Stim ca \fbox{\ \tan\frac x2=\frac {1-\cos x}{\sin x}\ } precum si \fbox{\ \sum\ \tan\ \frac A2=\frac {4R+r}s\ } . Prin urmare avem : \sum\ \frac 1{\cos\ \frac A2}=\frac {4R+r}s\ +\ \sum\ \tan\ \frac {B+C}4 , deci ramane ...
- Sun Sep 05, 2010 8:19 pm
- Forum: Inegalitati
- Topic: O inegalitate cu 1/cos(A/2) intr-un triunghi
- Replies: 3
- Views: 162
Cezar , partea dreapta la inegalitatea ta e mai slaba decat cea initiala, deoarece se reduce la s\sqrt 3\ \le\ 4R+r . Pentru inegalitatea de inceput se aplica inegalitatea Popoviciu functiei f(x)=\tan\frac x2 , x\in (0,\pi) . Totusi, partea stanga pare destul de tare ... Deocamdata am reusit sa o d...
- Fri Sep 03, 2010 11:14 pm
- Forum: Algebra
- Topic: O identitate simpla cu det si tr
- Replies: 2
- Views: 133
- Fri Sep 03, 2010 2:04 pm
- Forum: Algebra
- Topic: O identitate simpla cu det si tr
- Replies: 2
- Views: 133
O identitate simpla cu det si tr
Aratati ca daca \( A\in\mathcal{M}_2(\mathbb{C}) \) atunci exista relatia : \( \fbox{\ \det\ \left\(A^3+A^2+A+I_2\right\)=\left\[1+\tr A+\det A\right\]\ \cdot\ \left\[\left\(1-\det A\right\)^2+\tr^2 A\right\]\ } \) .
- Tue Aug 31, 2010 11:35 pm
- Forum: LaTeX
- Topic: Text in chenar
- Replies: 0
- Views: 90
Text in chenar
Am gasit codul care incadreaza foarte estetic o formula scrisa in \LaTeX si functioneaza aici pe Mateforum . In formula \LaTeX se aplica \fbox{ ... } pe portiunea ce se vrea de incadrat . Iata-l ce frumos e : \fbox{\ \mbox{MATEFORUM}\ } sau, mai mult \fbox{\fbox{\ \mathbf{MATEFORUM}\ }} . Acum arata...
- Tue Aug 31, 2010 7:26 pm
- Forum: Chat de voie
- Topic: Sfarsitul incununeaza opera.
- Replies: 0
- Views: 108
Sfarsitul incununeaza opera.
\clubsuit\ \ Cheie : "Sfarsitul incununeaza opera." Studiati cu mare atentie tabelul de mai jos, apoi raspundeti la intrebarea : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Se pune ceva in ultimele casute ? [/color] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...
- Tue Aug 31, 2010 4:15 pm
- Forum: Algebra
- Topic: Puterile unei matrice din M_3(R)
- Replies: 1
- Views: 612
- Sun Aug 29, 2010 4:11 pm
- Forum: Algebra
- Topic: Matrice de ordin 2
- Replies: 1
- Views: 76
Matrice de ordin 2
Sa se determine toate matricele \( A=\left\(\begin{array}{ccc}
a & b \\\\\\\\
c & d\end{array}\right\)\in\mathcal{M}_2(\mathbb{C}) \) pentru care \( A^n=\left\(\begin{array}{cccc}
a^n & b^n \\\\\\\\
c^n & d^n\end{array}\right\) \) , \( \forall\ n\in\mathbb{N}^{\ast} \) .
a & b \\\\\\\\
c & d\end{array}\right\)\in\mathcal{M}_2(\mathbb{C}) \) pentru care \( A^n=\left\(\begin{array}{cccc}
a^n & b^n \\\\\\\\
c^n & d^n\end{array}\right\) \) , \( \forall\ n\in\mathbb{N}^{\ast} \) .
- Sun Aug 29, 2010 2:00 pm
- Forum: Analiza matematica
- Topic: O limita
- Replies: 1
- Views: 101
O limita
Calculati : \( \lim_{x\to\infty}\ \left(\ 2^{\frac {2-x}x}\ +\ 4^{\frac {4-x}x}\ +\ 6^{\frac {6-x}x}\ +\ 12^{\frac {12-x}x}\ \right)^x \) .
- Sun Aug 29, 2010 1:00 am
- Forum: Clasa a X-a
- Topic: Inegalitate din G. M. 6/2010
- Replies: 1
- Views: 69
\odot\ \ LHS\ \stackrel{\small\mbox{CEB}}{\ge}\ \frac 13\cdot\left(a^m+b^m+c^m\right)\left(\frac 1{a^n+b^n}+\frac 1{b^n+c^n}+\frac 1{c^n+a^n}\right)\ \stackrel{\small\mbox{C.B.S.}}{\ge}\ \frac 32\ \cdot\ \frac {a^m+b^m+c^m}{a^n+b^n+c^n} . \odot\ \ Ramane sa aratam inegalitatea \frac{a^m+b^m+c^m}{a^...
- Sat Aug 28, 2010 1:32 pm
- Forum: Inegalitati
- Topic: O inegalitate cu 1/cos(A/2) intr-un triunghi
- Replies: 3
- Views: 162
O inegalitate cu 1/cos(A/2) intr-un triunghi
\( \fbox{\ \triangle\ ABC\ \ \Longrightarrow\ \ \frac 1{\cos\ \frac A2}\ +\ \frac 1{\cos\ \frac B2}\ +\ \frac 1{\cos\ \frac C2}\ \le\ \frac {\sqrt 3}2\ +\ \frac {3(4R+r)}{2s}\ } \)
- Fri Aug 27, 2010 11:24 pm
- Forum: Inegalitati
- Topic: O inegalitate draguta intr-un triunghi ascutit sau drept
- Replies: 0
- Views: 64
O inegalitate draguta intr-un triunghi ascutit sau drept
Aratati ca intr-un triunghi ascutit sau drept are loc inegalitatea : \( \fbox{\ \frac{a^4+b^4+c^4}{a^2+b^2+c^2}\ \ge\ 3R^2\ } \) .
- Fri Aug 27, 2010 11:17 pm
- Forum: Inegalitati
- Topic: Doua perechi de inegalitati in triunghiuri particulare
- Replies: 0
- Views: 55
Doua perechi de inegalitati in triunghiuri particulare
Sa se arate ca in \triangle\ ABC avem : \ \ \ \begin{array}{cccc}\nearrow\ \left\|\ \begin{array}{cccc} 0\ <\ \phi\ <\ 90^{\circ} \\\\ A\ \ge\ B\ \ge\ \phi\ \ge\ C\end{array}\ \right\|\ \Longrightarrow\ \left\{\begin{array}{cccc} a^2+b^2+c^2\ \ge\ 8R^2\cdot\sin^2\phi+4S\cdot\cot\phi \\\\ s\ \ge\ 2R\...
- Fri Aug 27, 2010 12:28 pm
- Forum: Inegalitati
- Topic: O inegalitate cu radicali intr-un triunghi
- Replies: 2
- Views: 136
DA , inegalitatea de mai sus are loc in orice triunghi ! Pentru a o arata puteti proceda astfel : Se ridica inegalitatea la patrat, se folosesc identitatile cunoscute si cateva transformari, iar in final se ajunge la inegalitatea (destul de tare zic eu) : \fbox{\ AI+BI+CI\ \ge\ s+3r(2-sqrt 3)\ } . ...