Din inegalitatea lui Maclaurin avem:
\( \frac{a+b+c+d}{4}\geq \sqrt[3]{\frac{abc+bcd+cda+dab}{4}} \), de unde rezulta concluzia.
Search found 106 matches
- Sun Jul 05, 2009 10:47 am
- Forum: Clasa a IX-a
- Topic: Inegalitate cunoscuta
- Replies: 2
- Views: 323
- Sat Jun 27, 2009 4:34 pm
- Forum: Clasa a IX-a
- Topic: Dreapta paralela cu bisectoarea
- Replies: 3
- Views: 338
- Thu Jun 25, 2009 1:25 pm
- Forum: Clasa a IX-a
- Topic: Trei variabile
- Replies: 2
- Views: 256
- Thu Jun 25, 2009 12:08 pm
- Forum: Clasa a IX-a
- Topic: Baltic Way 1996
- Replies: 0
- Views: 198
Baltic Way 1996
\bullet Consideram urmatorul joc de 2 persoane. Un numar de pietre sunt asezate pe o masa. Cei doi jucatori fac mutari alternative. O mutare consta in scoaterea a x pietre de pe masa, cu x patrat perfect ( x\neq 0 ). Jucatorul care nu mai poate muta pierde. Demonstrati ca exista o infinitate de sit...
- Mon Jun 15, 2009 2:08 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate Aaron Pixton*
- Replies: 5
- Views: 448
Fie a=\frac{x}{y}, \ b=\frac{y}{z} si c=\frac{z}{x}, \ x,y,z>0. Inegalitatea este echivalenta cu: 3+\displaystyle\sum_{cyc}\frac{yz}{x^2}\geq \displaystyle\sum_{cyc}\frac{y+z}{x}\Longleftrightarrow \displaystyle\sum_{cyc}\frac{1}{x^2}\cdot (x-y)(x-z)\geq 0, care rezulta din inegalitatea Vornicu-Schu...
- Sun Jun 14, 2009 10:05 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate Aaron Pixton*
- Replies: 5
- Views: 448
Inegalitate Aaron Pixton*
Fie \( a,b,c \) numere reale pozitive cu \( abc=1. \) Demonstrati ca:
\( 5+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq (1+a)(1+b)(1+c). \)
Aaron Pixton
\( 5+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq (1+a)(1+b)(1+c). \)
Aaron Pixton
- Tue Jun 09, 2009 4:00 pm
- Forum: Clasa a IX-a
- Topic: Functie de grad 3
- Replies: 1
- Views: 218
Functie de grad 3
Determinati \( a\in\mathbb{N}^{*} \) si \( b,c,d\in\mathbb{R} \) astfel incat:
\( |ax^3+bx^2+cx+d|\leq 2, \ \forall\ x\in [-2,2]. \)
\( |ax^3+bx^2+cx+d|\leq 2, \ \forall\ x\in [-2,2]. \)
- Mon Jun 08, 2009 10:46 am
- Forum: Clasa a IX-a
- Topic: Inegalitate mai "tare" ca Nesbitt
- Replies: 5
- Views: 517
IMO 1989 Longlist - Problema 68
In IMO Compendium (IMO 1989 Longlist - Problema 68, pag 239) apare urmatoare inegalitate propusa de Mongolia: Daca 0<k\leq 1 si a_{i}, \ i=\overline{1,n} sunt numere reale pozitive atunci "are loc" inegalitatea: \left (\frac{a_{1}}{a_{2}+a_{3}+\dots+a_{n}}\right )^k+\dots +\left (\frac{a_{...
- Sun Jun 07, 2009 4:32 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate mai "tare" ca Nesbitt
- Replies: 5
- Views: 517
Inegalitate mai "tare" ca Nesbitt
Fie \( a,b,c \) trei numere reale pozitive. Demonstrati ca:
\( \frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{\sqrt{2(c^2+a^2)}}+\frac{c}{\sqrt{2(a^2+b^2)}}\geq\frac{3}{2}. \)
\( \frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{\sqrt{2(c^2+a^2)}}+\frac{c}{\sqrt{2(a^2+b^2)}}\geq\frac{3}{2}. \)
- Sat May 09, 2009 7:12 pm
- Forum: Inegalitati
- Topic: INEGALITATE BARAJ JUNIORI 2009
- Replies: 1
- Views: 480
Solutia mea
Avem: \displaystyle\sum_{cyc}\frac{a+3}{3a+bc}=\displaystyle\sum_{cyc}\frac{(a+b)+(a+c)}{(a+b)(a+c)} Introducem notatiile: x=a+b;y=b+c;z=c+a. Acum vom avea: x+y+z=6. Inegalitatea se rescrie: \displaystyle\sum_{cyc}\frac{x+y}{xy}=2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 2\cdot\frac{9}{x+y+z}=2\cdot...
- Sat May 09, 2009 6:49 pm
- Forum: Inegalitati
- Topic: INEGALITATE BARAJ JUNIORI 2009
- Replies: 1
- Views: 480
INEGALITATE BARAJ JUNIORI 2009
Fie \( a,b,c \) numere reale strict pozitive, cu \( a+b+c=3. \) Sa se demonstreze inegalitatea:
\( \frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\geq 3. \)
\( \frac{a+3}{3a+bc}+\frac{b+3}{3b+ca}+\frac{c+3}{3c+ab}\geq 3. \)
- Thu Apr 09, 2009 6:47 pm
- Forum: Clasa a VIII-a
- Topic: Inegalitate
- Replies: 1
- Views: 406
- Wed Apr 08, 2009 5:55 pm
- Forum: Clasa a IX-a
- Topic: Multime densa in (0;1)
- Replies: 0
- Views: 452
Multime densa in (0;1)
Fie \( \alpha \) un numar irational. Demonstrati ca multimea:
\( A=\{\{n^2\alpha\} \ | n\in\mathbb{N}^{*}\}, \)
este densa in \( (0;1). \)
\( A=\{\{n^2\alpha\} \ | n\in\mathbb{N}^{*}\}, \)
este densa in \( (0;1). \)
- Sat Apr 04, 2009 6:21 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate conditionata in triunghi
- Replies: 2
- Views: 414
Inlocuind in acea inegalitate vom obtine \sum \cos A\leq\frac{3}{2} . Care este evident adevarata din ineg lui Jensen caci cos este concava pe [0;\pi] si deci avem \frac{\sum \cos A}{3}\leq\cos\(\frac{A+B+C}{3}\)=\cos\frac{\pi}{3}=\frac{1}{2} de unde cerinta. Nu prea cred. Functia \cos este concava...
- Sat Apr 04, 2009 5:55 pm
- Forum: Clasa a IX-a
- Topic: O inegalitate "mai tare" intr-un triunghi.
- Replies: 1
- Views: 333
Re: O inegalitate "mai tare" intr-un triunghi.
Sa se arate ca intr-un triunghi ABC exista inegalitatea "mai tare" \underline{\overline{\left\|\ 3\cdot\sum a^2(b+c-a)\ \le\ 8abc+\prod (b+c-a)\ \right\|}}\ \le\ 9abc . Avem: 1) \prod (b+c-a)=\displaystyle\sum_{sym}a^2b-\displaystyle\sum_{cyc}a^3-2abc 2) \displaystyle\sum_{cyc}a^2(b+c-a)=...
- Sat Apr 04, 2009 4:33 pm
- Forum: Clasa a IX-a
- Topic: Inegalitate cu medii (probabil cunoscuta)
- Replies: 3
- Views: 415
Fie a,b\in\mathbb{R} astfel incat ab>0. Atunci are loc inegalitatea: \frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\geq\sqrt{ab}+\frac{a+b}{2}. ( Heinz-Jurgen Seiffert ) Sa introducem substitutiile: a+b=2s \ \wedge \ ab=p^2. Din inegalitatea mediilor vom avea ca: s\geq p. Inegalitatea din enunt va fi ech...
- Fri Apr 03, 2009 7:54 pm
- Forum: Clasa a IX-a
- Topic: Drepte concurente in triunghi
- Replies: 3
- Views: 875
Solutie
http://img21.imageshack.us/img21/8038/virgilniculamateforumz.png Fie notatiile cele din figura de mai sus. ( in loc de X,Y,Z am pus A^{\prime}, B^{\prime}, C^{\prime} deoarece nu stiu din ce motiv in Geogebra apare o eroare cand atribuim unui punct litera X ). Vom demonstra ca cele trei drepte sunt...